Substrate bonding

From LNF Wiki
Jump to navigation Jump to search

Substrate bonding refers to attaching two or more substrates of material such as glass or silicon, to each other by means of various chemical and physical effects. Substrate bonding is mainly used in MEMS, where sensor components are encapsulated in the application. The most common types of bonding are adhesive, anodic, eutectic, fusion, glass frit, direct wafer or fusion bonding, and metallic diffusion.


SB-6E Bonder

Main article: SB-6E Bonder

The SB-6E is primary used for 100mm wafer bonding (no polymers), although it can be configured for 150mm for special circumstances.

EVG 520IS Bonder

Main article: EVG 520IS

The EVG 520IS allows bonding (no polymers) on pieces up to 6" wafers.

EVG 510 Bonder

Main article: EVG 510

The EVG 510 allows polymer bonding on pieces up to 6" wafers


There are 7 primary methods which define substrate bonding technology. These have been mentioned above and are described in detail below.

Bonding method Bond materials Temperature range Pressure range Bond Surface Roughness Hermetic seal Relative bond strength Tool
Adhesive bonding variety of materials including polymers, adhesives, epoxies, dry films, BCB, polyimides, and UV curable compounds <400ºC Low Adhesive will reflow to fill voids. EVG 510, FCB
Anodic Si, ionic glass (pyrex) 180-450ºC Low Ra<1um roughness Yes SB-6E or EVG 520IS
Eutectic Materials to form eutectic compound 150-400°C Low Eutectic metal will reflow to fill voids and incorporate particles up to melt thickness. EVG 520IS or SB-6E
Fusion (direct wafer) Si, silica, quartz, quartz glass, other glasses, compound semiconductors, oxide materials. 25-1100°C (prebond in bonder, annealing in separate tool) Low Ra<40Å EVG 520IS or SB-6E
Glass frit High Can tolerate high surface roughness. EVG 520IS or SB-6E
Thermal Compression High EVG 520IS
Transient Liquid Phase Low EVG 520IS or SB-6E

Adhesive bonding

Main article: Adhesive bonding

Uses a layer of polymer or adhesive, including epoxies, dry films, BCB, polyimides, and UV curable compounds between the substrates to bond the substrates together. This introduces a foreign material between your substrates, but there is a wide variety of materials that can make this method desirable for it's extremely wide range of temperature and control.

Relatively low temperatures help protect sensitive components

Anodic bonding

Main article: Anodic bonding

This type of bonding involves encapsulating components on a silicon wafer by means of ionic glass. When ionic glass is heated, it becomes increasingly less insulating. When a high voltage is applied, current is able to flow which causes the migration of the ions in the glass. The resistance of the ionic glass dramatically decreases with increased temperatures, thus successful bonding can occur through a range of temperatures and voltages depending on your device tolerances. Altering the surface energy of the substrate materials through plasma activation can also provide some process lattitude depending on your stress, temperature, and voltage tolerances.

Bond is hermetically sealed and displays good resistance to thermal and chemical effects Very reliable bond, probably the most forgiving with substrate flatness

Eutectic bonding

Main article: Eutectic bonding

Eutectic wafer bonding takes advantage of the special properties of eutectic metals. Similar to soldering alloys, such metals melt already at low temperatures. This property allows planar surfaces to be achieved.

In order to control reflow of the eutectic material, eutectic bonding requires precise dosing of the bonding force and even temperature distribution.

  • High mechanical strength
  • High resistance to thermal and chemical effects

Fusion (direct wafer) bonding

Main article: Fusion bonding

Fusion bonding refers to spontaneous adhesion of two planar substrates. The process involves rinsing the polished discs and rendering them largely hydrophilic, then placing them in contact and tempering them at high temperatures. Plasma pretreatment allows the substrates to be bonded at room temperature.

  • Less process time required
  • Low temperatures protect sensitive components

Glass Frit bonding

Main article: Glass Frit bonding

This process involves screen-printing glass frits onto the bonding surfaces. This results in structures that are subsequently heated and fused when the two substrate surfaces are placed in contact. On cooling, a mechanically stable bond results.

Low production costs

Thermal Compression bonding

Metal diffusion bonding is based on Cu-Cu, Al-Al, Au-Au and other metallic bonds. In addition, the use of metal diffusion allows two wafers to be bonded both mechanically and electrically in a single step. The technique is required for bonding in 3D applications such as 3D stacking.

  • Highest level of impermeability among all common bonding processes
  • High alignment precision following bonding


  • End of process packaging
  • Hermetic Sealing
  • Bonding Sensor and IC chips

See also

Other related wiki pages


Madou, Marc J (2012), Fundamentals of Microfabrication and Nanotechnology, Volume III

Further reading