Electron beam lithography
Electron beam lithography | |
---|---|
Technology Details | |
Other Names | %other names and abbreviations, separated by commas% |
Technology | %Parent technology% |
Equipment | List of electron beam lithography equipment |
Materials | %Optional materials processed% |
This page has not been released yet. |
Electron beam lithography (often abbreviated as e-beam lithography) is a direct writing technique that uses an accelerated beam of electrons to pattern features down to sub-10 nm on substrates that have been coated with an electron beam sensitive resist. Exposure to the electron beam changes the solubility of the resist, enabling selective removal of either the exposed or non-exposed regions of the resist by immersing it in a developer.[1]
The primary advantage of Electron beam lithography is that it can write custom patterns with sub-10 nm resolution. This form of Direct writing has high resolution and low throughput, limiting its usage to photomask fabrication, low-volume production of semiconductor devices, and research & development.[1]
Contents
Method of operation
An Electron beam lithography system uses hardware similar to a scanning electron microscope (SEM) to guide a nanometer sized focused beam of electrons to form a latent image in a layer of resist. The result of this exposure is to render the resist either more soluble (called a positive tone resist) or less soluble (negative tone resist) in an appropriate developer solution. The resulting pattern is then transferred via etching or by depositing other materials. By iterating a number of steps of this type, complex structures of very short length scales can be built up.[2]
Electron beam lithography tools have a certain maximum area that it can write for a fixed stage position know as Write Field. Typically, they range from a few 10s of µms to 1-2 mms. If the pattern to be exposed is more than the size of the write field, the electron beam is blanked, the stage moves by a distance of 1 write field and the writing continues. To avoid discontinuities or overlaps between write fields (known as field stitching errors), an electron beam lithography system has a laser interferometry stage position system that allows stitching of fields with nanometer scale precision.
There is almost always a difference between the digital line width in a pattern and the actual developed feature size after processing. This comes about from electron scattering in the resist. For a well-characterized process, there is generally a fixed difference between the digital size and the actual size, known as bias. This can be implemented by altering all the sizes in the design as appropriate.[3]
Pattern fidelity is limited by electron-matter interactions especially in layouts with a high feature density. The electron scattering within the resist and the from the substrate results in undesired exposures of the resist in regions adjacent to the primary incident beam. This effect is known as the "Proximity Effect" in electron beam lithography. Due to proximity effects, corners in the desired patterns are rounded, gap spacings and linewidths are modified, and certain features may even merge together or disappear completely.[4]
Parameters
- Exposure energy
- Exposure dose
- Pattern density
- Resist material
- Resist thickness
- Developer
- Development time
- Development temperature
Subtechnology 1
Describe any sub-technologies of this technology.
Applications
How is this technology used in nanofabrication and what types of devices/research areas is it useful in?
Materials
Optional description of materials that can be processed by technology. I think the best example of where this comes in handy would be with LPCVD describing the difference between HTO and LTO.
Equipment
If this is a "main category" for equipment (i.e. you categorized that equipment page to be this technology), you should list the equipment here with a brief description of that tool's capabilities. Seriously, though, just check out the RIE page.
Equipment 1
Brief description of that piece of equipment.
Complete tool list
See also
Other related wiki pages
References
- ↑ 1.0 1.1 From Wikipedia.org
- ↑ Handbook of Nanofabrication, Academic Press, May 25, 2010
- ↑ Nanofabrication Handbook, edited by Stefano Cabrini, Satoshi Kawata, CRC Press, Feb 24, 2012
- ↑ Ren, Liming, and Baoqin Chen. "Proximity effect in electron beam lithography." Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on. Vol. 1. IEEE, 2004.
Further reading
- Other stuff, e.g. technology workshop slides
- External links (can be in another section below, if appropriate)