GSI PECVD

From LNF Wiki
Jump to navigation Jump to search


GSI PECVD
21040.jpg
GSI ULTRADEP 2000 PECVD System
Equipment Details
Technology PECVD
Materials Restriction Semi-Clean
Material Processed SiO2, Si3N3, SiOxNy
Sample Size 100mm and Pieces
Equipment Manual
Overview System Overview
Operating Procedure SOP
Supported Processes Standard Processes
User Processes User Processes
Maintenance Maintenance


Warning Warning: This page has not been released yet.

The GSI ULTRADEP 2000 is a Plasma Enhanced Chemical Vapor Deposition (PECVD) system configured to deposit SiO2, Si3N4, and SiOxNy on substrates up to 100mm diameter. This system utilizes a load-lock and is a single wafer system that deposits film on one side of the substrate at a time. Deposition temperature may range from 100C to 380C. Substrate heating is accomplished with the utilization of a heater block. Close loop pressure regulation includes the usage of a 10T baratron pressure gauge, butterfly valve, Ebara A70W dry vacuum pump. The power delivery system has dual frequency (13.56MHz and 420KHz) capability and is capacitively coupled through the showerhead electrode.

Announcements

  • Update this with announcements as necessary

Capabilities

  • Standard recipes Oxide 200 and Oxide 380 are optimized for average refractive index of 1.46 +/-0.006.
  • Standard recipes Nitr 200 Conv and Nitr 380 Conv are optimized for average refractive index of 2.00 +/-0.006.
  • Standard recipe Oxide 200 LS is optimized for low stress (<60MPa for >1um Films)
  • Standard recipe Oxide 200 THIN is optimized for minimum porosity of films 1500-5000 angstroms

System Overview

Hardware Details

  • Gases
    • Standard Gasbox Mounted MFC's
      • SIH4 - 300 sccm
      • SIH4 - 5 sccm
      • O2 - 1000 sccm
      • NH3 - 1000 sccm
      • N2O - 2000 sccm
      • NF3 - 500 sccm
      • He - 500 sccm
      • N2 - 1000 sccm
  • Pressure
    • Process Chamber utilizes Ebara A70W dry pump, butterfly valve, and 10T Baratron.
    • Load-lock utilizes Alcatel ACP 28G dry pump.
    • Deposition processes operate between 1.5T to 4.5T
  • Chuck
    • Heater block 100°C - 380°C
  • RF
    • Comdel dual frequency generator- RF1 1000W 13.56MHz RF2 200W 420kHz
    • Advanced Energy Navigator 13.56MHz auto-matching network utilizes variable vacuum capacitors via stepper motors with built-in VI probe at output.
    • 420kHz impedance matching is accomplished via stand alone fixed match with the center impedance designed for the conjugate load impedance of the standard Nitride processes.

Substrate Requirements

  • 100mm (4") wafers and pieces
  • Substrate material:
    • Silicon
    • Glass
    • GaAs
  • Aluminum carrier is used for all runs.
  • Maximum substrate thickness is 2mm.

Material Restrictions

The GSI PECVD is designated as a Semi-Clean class tool. Below is a list of approved materials for the tool. Approved means the material is allowed in the tool under normal circumstances. If a material is not listed, please create a helpdesk ticket or email info@lnf.umich.edu for any material requests or questions.


Supported Processes

There are several targeted SiO2 and Si3N4 processes supported by the LNF. Characterization data for these processes is captured in the table below, including deposition rate, within wafer non-uniformity percentage, refractive index, and film stress.

If you are curious if your material can be processed in this tool, please contact the tool engineers via the helpdesk ticket system as a GSI PECVD "General Question" type ticket.

Standard Operating Procedure

Widget text will go here.

Checkout Procedure

  1. Read through the System Overview and the SOP.
  2. Create a Helpdesk Ticket requesting training. Please include information on your desired deposition process (films, thicknesses) and a description of your sample (substrate size, substrate material, and materials already present on your sample). Please verify that your substrate material and materials already present on your sample are listed as approved materials in the System Overview.
  3. A tool engineer will contact you to arrange a time for initial training.
  4. One or more of these training sessions will be required before a checkout session can be arranged to gain authorization on the tool.
  5. Request a checkout session with a tool engineer via the helpdesk ticket system. If this checkout is successful, the engineer will authorize you on the tool.

Maintenance

  • Chamber maintenance is performed after every 30um's of deposition.
  • Following chamber maintenance, a monitor wafer is run on one of the LNF supported standard processes (typically Oxide 200 1500 angstroms) to check tool performance and film characteristics.

Process Name