Difference between revisions of "Sputter deposition"

From LNF Wiki
Jump to navigation Jump to search
Line 38: Line 38:
  
 
<gallery mode="packed-hover"  heights="340px">
 
<gallery mode="packed-hover"  heights="340px">
Sputter_process_trend_chart.jpg
+
Sputter Process Trend Chart.jpg
 
</gallery>
 
</gallery>
  

Revision as of 12:42, 5 February 2016


Sputter deposition
Sputter Deposition.png
Equipment Details
Technology PVD
Materials Restriction Metals
Material Processed Ag, Al, Al2O3, Au, Cr, Cu, Fe, Ge, Ni, Pt, SiO2, Ti, TiO2, Zn
Sample Size 6", 4", 3" and 2" wafers, Pieces
Gases Used Ar, N2, O2 1%, O2 0.1%
Equipment Manual
Overview General Overview: Wikipedia Sputter Deposition


Warning Warning: This page has not been released yet.

Sputter Deposition is a physical vapor deposition (PVD) method of thin film deposition in which a high-purity source material (called a cathode or target) is subjected to a gas plasma (typically Ar.) The energetic atoms in this gas plasma collide with the target material and knock off source atoms which then travel to the substrate and condense into a thin film.

Figures of Merit

Uniformity

Uniformity measures the variation in thickness across a substrate and is usually expressed as a percentage. Typically: (Thickness Max - Thickness Min)/Thickness Average. Uniformity is typically set by the material being deposited and the geometry of the system: throw distance, substrate rotation and deposition angle.

  • In sputtering, uniformity is determined by throw distance and the shape of the deposition
    • In the Denton and Lab 18 tools, smaller sources eject material from the face of a 3" target that is angled to cover around 1/2 of the substrate area. The substrate is rotated to coat the entire area. Varying the angle will vary the throw distance and change the amount deposited on the center and edge. The supplies have a set throw angle that is optimized for best uniformity.
    • In the ALN tool, the wafer is centered over two targets which are larger than the substrate. Uniformity can be only be adjusted using the DC supply which raises and lowers the power to the center target.


Deposition Rate, Stress, Resistivity and Step Coverage

Typical response of sputtering.

LNF Capabilities



Lab 18-1

Main article: Lab 18-1
  • Materials Deposited: Al2O3, ITO, Mo, Si, SiO2, Si3N4, Ta, Ta2O5, Ti, TiO2
  • Lab 18-1 is a loadlocked magnetron sputter tool used for depositing metals, insulators, optical and semiconductive films. It has a variable-gated turbo pump and more sensitive gas flows that allow it to run more sensitive gas ratios (<1%) for reactive sputtering. It has a DC supply for conductive materials and RF supplies for electrically insulating materials. Deposition rates vary by material but are generally mich slower for RF depositions. The tool supports 5 materials at a time, rotated using the 18-1 Target Change Calendar

Lab 18-2

Main article: Lab 18-2
  • Materials: Al,Cr,Cu,Au,Ge,Ir,Ni,NiCr,Pt,Si,Ag,Ti
  • Lab 18-2 is a loadlocked magnetron sputter tool used for mostly for depositing metals. It uses DC for conductive materials and RF for electrically insulating materials. Deposition rates vary by material but are generally slower for RF depositions. The tool supports 5 materials at a time, rotated using the 18-2 Target Change Calendar

Denton Explorer

Main article: Denton Explorer
  • The Denton Explorer is an open-loop 2-source magnetron sputter tool used as a Lab 18 backup for depositing metal films

AMS 2004 Aluminum Nitride Sputter Tool

  • Materials deposited: AlN, Al
  • The AMS tool is designed specifically for Piezoelectric AlN on 4" wafers. It is a high temperature process that works only on certain substrates with specific seeding matetrials and the handler is only designed for 4" wafers are this time.

References